09972205537 

BEAT365官方网站陶瓷基板七大制备技术详解干货!(大全)

首页 > 新闻中心 > 工作动态

  

BEAT365官方网站陶瓷基板七大制备技术详解干货!(大全)

  陶瓷基板用技术不同命名有七大种类,今天小编就来详细阐述一下这个七大技术的原理,制备原理、工艺流程、技术特点和具体应用以及发展趋势。

  第一代半导体以硅 (Si)、锗 (Ge) 材料为代表,主要应用在数据运算领域,奠定了微电子产业基础。第二代半导体以砷化镓 (GaAs)、磷化铟 (InP) 为代表,主要应用于通信领域,用于制作高性能微波、毫米波及发光器件,奠定了信息产业基础。随着技术发展和应用需要的不断延伸,二者的局限性逐渐体现出来,难以满足高频、高温、高功率、高能效、耐恶劣环境以及轻便小型化等使用需求。以碳化硅 (SiC) 和氮化镓 (GaN) 为代表的第三代半导体材料具有禁带宽度大、临界击穿电压高、热导率高、载流子饱和漂移速度大等特点,其制作的电子器件可在 300°C 甚至更高温度下稳定工作 (又称为功率半导体或高温半导体),是固态光源 (如 LED)、激光器 (LD)、电力电子 (如IGBT)、聚焦光伏 (CPV)、微波射频 (RF) 等器件的“核芯”,在半导体照明、汽车电子、新一代移动通信 (5G)、新能源与新能源汽车、高速轨道交通、消费类电子等领域具有广阔的应用前景,有望突破传统半导体技术瓶颈,与第一代、第二代半导体技术互补,在光电器件、电力电子、汽车电子、航空航天、深井钻探等领域具有重要应用价值,对节能减排、产业转型升级、催生新经济增长点将发挥重要作用。

  伴随着功率器件 (包括 LED、LD、IGBT、CPV 等) 不断发展,散热成为影响器件性能与可靠性的关键技术。对于电子器件而言,通常温度每升高 10°C,器件有效寿命就降低 30% ~ 50%。因此,选用合适的封装材料与工艺、提高器件散热能力就成为发展功率器件的技术瓶颈。以大功率 LED 封装为例,由于输入功率的 70% ~ 80% 转变成为热量 (只有约 20% ~ 30% 转化为光能),且 LED 芯片面积小,器件功率密度很大 (大于 100 W/cm2),因此散热成为大功率 LED 封装必须解决的关键问题。如果不能及时将芯片发热导出并消散,大量热量将聚集在 LED 内部,芯片结温将逐步升高,一方面使 LED 性能降低 (如发光效率降低、波长红移等),另一方面将在 LED 器件内部产生热应力,引发一系列可靠性问题 (如使用寿命、色温变化等)。

  随着功率器件特别是第三代半导体的崛起与应用,半导体器件逐渐向大功率、小型化、集成化、多功能等方向发展,对封装基板性能也提出了更高要求。陶瓷基板 (又称陶瓷电路板) 具有热导率高、耐热性好、热膨胀系数低、机械强度高、绝缘性好、耐腐蚀、抗辐射等特点,在电子器件封装中得到广泛应用。本文分析了常用陶瓷基片材料 (包括 Al2O3、AlN、Si3N4、BeO、SiC 和 BN 等) 的物理特性,重点对各种陶瓷基板 (包括薄膜陶瓷基板 TFC、厚膜印刷陶瓷基板 TPC、直接键合陶瓷基板 DBC、直接电镀陶瓷基板 DPC、活性金属焊接陶瓷基板AMB、激光活化金属陶瓷基板 LAM 以及各种三维陶瓷基板等) 。

  陶瓷基板又称陶瓷电路板,包括陶瓷基片和金属线路层。对于电子封装而言,封装基板起着承上启下,连接内外散热通道的关键作用,同时兼有电互连和机械支撑等功能。陶瓷具有热导率高、耐热性好、机械强度高、热膨胀系数低等优势,是功率半导体器件封装常用的基板材料。根据封装结构和应用要求,陶瓷基板可分为平面陶瓷基板和三维陶瓷基板两大类。

  薄膜陶瓷基板一般采用溅射工艺直接在陶瓷基片表面沉积金属层。如果辅助光刻、显影、刻蚀等工艺,还可将金属层图形化制备成线 所示。由于溅射镀膜沉积速度低 (一般低于 1 μm/h),因此 TFC 基板表面金属层厚度较小 (一般小于 1 μm),可制备高图形精度 (线 μm) 陶瓷基板,主要应用于激光与光通信领域小电流器件封装。

  通过丝网印刷将金属浆料涂覆在陶瓷基片上,干燥后经高温烧结 (温度一般在 850°C ~ 900°C) 制备 TPC 基板,其工艺流程如图 7 所示。根据金属浆料粘度和丝网网孔尺寸不同,制备的金属线 μm (提高金属层厚度可通过多次丝网印刷实现)。TFC 基板制备工艺简单,对加工设备和环境要求低,具有生产效率高、制造成本低等优点。但是,由于丝网印刷工艺限制,TFC 基板无法获得高精度线路 (最小线 μm)。此外,为了降低烧结温度,提高金属层与陶瓷基片结合强度,通常在金属浆料中添加少量玻璃相,这将降低金属层电导率和热导率。因此 TPC 基板仅在对线路精度要求不高的电子器件 (如汽车电子) 封装中得到应用。TPC 基板样品及其截面图如图 8 所示。

  目前 TPC 基板关键技术在于制备高性能金属浆料。金属浆料主要由金属粉末、有机载体和玻璃粉等组成。浆料中可供选择的导体金属有 Au、Ag、Ni、Cu 和 Al 等。银基导电浆料因其具有较高的导电、导热性能及相对低廉的价格而应用广泛 (占金属浆料市场 80% 以上份额)。研究表明,银颗粒粒径颗粒粒径、形貌等对导电层性能影响很大。如Park等人通过加入适量纳米银颗粒降低了银浆电阻率:Zhou等人指出金属层电阻率随着球状银颗粒尺寸减小而降低,片状银粉(尺寸6m)制备的金属浆料电阻率远小于同样尺寸球状银粉制备的浆料。

  DBC陶瓷基板制备首先在铜箔(Cu)和陶瓷基片(Al2O3或AN间引入氧元素,然后在1065°C形成CuO共晶相(金属铜熔点为1083°C),进而与陶瓷基片和铜箔发生反应生成CuAO2或Cu(AO2)2,实现铜箔与陶瓷间共晶键合,其制备工艺和产品分别如图9和图10所示。由于陶瓷和铜具有良好的导热性,且铜箔与陶瓷间共晶键合强度高,因此DBC基板具有较高的热稳定性,已广泛应用于绝缘栅双极二极管(GBT)、激光器(LD)和聚焦光伏(CPV)等器件封装散热中。

  DBC基板铜箔厚度较大(一般为100μm-600μm),可满足高温、大电流等极端环境下器件封装应用需求(为降低基板应力与制曲,一船采用C1-A1O2C的三明治结构.日上下铜层厚度相同)

  虽然DBC基板在实际应用中有诸多优势,但在制备过程中要严格控制共晶温度及氧含量,对设备和工艺控制要求较高,生产成本也较高。

  此外,由于厚铜刻蚀限制,无法制备出高精度线路层在DBC基板制备过程中,氧化时间和氧化温度是最重要的两个参数。铜箔经预氧化后,键合界面能形成足够 CuxOy 相润湿 Al2O3 陶瓷与铜箔,具有较高的结合强度;若铜箔未经过预氧化处理,CuxOy 润湿性较差,键合界面会残留大量空洞和缺陷,降低结合强度及热导率。对于采用 AlN 陶瓷制备 DBC 基板,还需对陶瓷基片进行预氧化,先生成 Al2O3 薄膜,再与铜箔发生共晶反应。谢建军等人用 DBC 技术制备 Cu/Al2O3、Cu/AlN 陶瓷基板,铜箔和 AlN 陶瓷间结合强度超过 8 N/mm,铜箔和 AlN 间存在厚度为 2 μm 的过渡层,其成分主要为 Al2O3、CuAlO2 和 Cu2O。

  目前,制备活性焊料是 AMB 基板制备关键技术。活性焊料的最初报道是 1947 年 Bondley 采用TiH2 活性金属法连接陶瓷与金属,在此基础上,Bender 等人提出 Ag-Cu-Ti 活性焊接法。活性焊料主要分为高温活性焊料 (活性金属为 Ti、V 和 Mo 等,焊接温度 1000°C ~ 1250°C)、中温活性焊料(活性金属为 Ag-Cu-Ti,焊接温度 700°C ~ 800°C,保护气体或真空下焊接) 和低温活性焊料 (活性金属为 Ce、Ga 和 Re,焊接温度 200°C ~ 300°C)。中高温活性焊料成分简单,操作容易,焊接界面机械强度高,在金属-陶瓷焊接中得到广泛应用。Naka 等人分别采用 Cu60Ti34 活性焊料焊接 Si3N4陶瓷和 NiTi50 活性焊料焊接 SiC,前者室温下焊接界面剪切强度达到 313.8 MPa,而后者在室温、300°C和 700°C 时的焊接界面剪切强度分别为 158 MPa、316 MPa 和 260 MPa。

  由于 DBC 陶瓷基板制备工艺温度高,金属-陶瓷界面应力大,因此 AMB 技术越来越受到业界关注,特别是采用低温活性焊料。如 Chang 等人使用 Sn3.5Ag4Ti(Ce,Ga) 活性焊料在 250°C 下分别实现了 ZnS-SiO2、ITO 陶瓷以及 Al2O3 陶瓷与 Cu 层焊接;Tsao 等人使用 Sn3.5Ag4Ti(Ce) 活性焊料实现了 Al 与微亚弧氧化铝 (MAO-Al) 间焊接。

  DPC 陶瓷基板制备工艺如图 13 所示。首先利用激光在陶瓷基片上制备通孔 (孔径一般为 60 μm ~ 120 μm),随后利用超声波清洗陶瓷基片;采用磁控溅射技术在陶瓷基片表面沉积金属种子层 (Ti/Cu),接着通过光刻、显影完成线路层制作;采用电镀填孔和增厚金属线路层,并通过表面处理提高基板可焊性与抗氧化性,最后去干膜、刻蚀种子层完成基板制备。

  从图 13 可以看出,DPC 陶瓷基板制备前端采用了半导体微加工技术 (溅射镀膜、光刻、显影等),后端则采用了印刷线路板 (PCB) 制备技术 (图形电镀、填孔、表面研磨、刻蚀、表面处理等),技术优势明显。具体特点包括:(1) 采用半导体微加工技术,陶瓷基板上金属线路更加精细 (线 μm,与线路层厚度相关),因此 DPC 基板非常适合对准精度要求较高的微电子器件封装;(2) 采用激光打孔与电镀填孔技术,实现了陶瓷基板上/下表面垂直互联,可实现电子器件三维封装与集成,降低器件体积,如图 14 (b) 所示;(3) 采用电镀生长控制线 μm),并通过研磨降低线路层表面粗糙度,满足高温、大电流器件封装需求;(4) 低温制备工艺 (300°C 以下) 避免了高温对基片材料和金属线路层的不利影响,同时也降低了生产成本。综上所述,DPC 基板具有图形精度高,可垂直互连等特性,是一种真正的陶瓷电路板。

  但是,DPC 基板也存在一些不足:(1) 金属线路层采用电镀工艺制备,环境污染严重;(2) 电镀生长速度低,线路层厚度有限 (一般控制在 10 μm ~ 100 μm),难以满足大电流功率器件封装需求。目前 DPC 陶瓷基板主要应用于大功率 LED 封装,生产厂家主要集中在我国台湾地区,但从 2015 年开始大陆地区已开始实现量产。

  金属线路层与陶瓷基片的结合强度是影响 DPC 陶瓷基板可靠性的关键。由于金属与陶瓷间热膨胀系数差较大,为降低界面应力,需要在铜层与陶瓷间增加过渡层,从而提高界面结合强度。由于过渡层与陶瓷间的结合力主要以扩散附着及化学键为主,因此常选择 Ti、Cr 和 Ni 等活性较高、扩散性好的金属作为过渡层 (同时作为电镀种子层)。Lim 等人采用 50 W 的 Ar 等离子束对 Al2O3 基片清洗 10 min,随后再溅射 1 μm ± 0.2 μm 的铜薄膜,二者粘结强度高于 34 MPa,而未进行等离子清洗的基片与铜薄膜的粘结强度仅为 7 MPa。占玙娟在溅射 Ti/Ni (其厚度分别为 200 nm 与 400 nm)薄膜之前,采用 600 eV、700 mA 的低能离子束对 AlN 陶瓷基片清洗 15 min,所得到的金属薄膜与陶瓷基片的粘结强度大于 30 MPa。可以看出,对陶瓷基片进行等离子清洗可大大提高与金属薄膜间的结合强度,这主要是因为:(1) 离子束去除了陶瓷基片表面的污染物;(2) 陶瓷基片因受到离子束的轰击而产生悬挂键,与金属原子结合更紧密。

  电镀填孔也是 DPC 陶瓷基板制备的关键技术。目前 DPC 基板电镀填孔大多采用脉冲电源,其技术优势包括:(1) 易于填充通孔,降低孔内镀层缺陷;(2) 表面镀层结构致密,厚度均匀;(3) 可采用较高电流密度进行电镀,提高沉积效率。陈珍等人采用脉冲电源在 1.5 ASD 电流密度下电镀2 h,实现了深宽比为 6.25 的陶瓷通孔无缺陷电镀。但脉冲电镀成本高,因此近年来新型直流电镀又重新得到重视,通过优化电镀液配方 (包括整平剂、抑制剂等),实现盲孔或通孔高效填充。如林金堵等人通过优化电镀添加剂、搅拌强度及方式和电流参数,实现了通孔与盲孔电镀。

  LAM 基板制备利用特定波长的激光束选择性加热活化陶瓷基片表面,随后通过电镀/化学镀完成线路层制备,工艺流程如图 15 (a) 所示。其技术优势包括:(1) 无需采用光刻、显影、刻蚀等微加工工艺,通过激光直写制备线路层,且线宽由激光光斑决定,精度高 (可低至 10 μm ~ 20 μm),如图 15 (b) 所示;(2) 可在三维结构陶瓷表面制备线路层,突破了传统平面陶瓷基板金属化的限制,如图 15 (c) 所示;(3) 金属层与陶瓷基片结合强度高,线路层表面平整,粗糙度在纳米级别。从上可以看出,虽然 LAM 技术可在平面陶瓷基板或立体陶瓷结构上加工线路层,但其线路层由激光束“画”出来,难以大批量生产,导致价格极高,目前主要应用在航空航天领域异型陶瓷散热件加工。

  高/低温共烧陶瓷基板 (HTCC/LTCC):HTCC 基板制备过程中先将陶瓷粉 (Al2O3 或 AlN) 加入有机黏结剂,混合均匀后成为膏状陶瓷浆料,接着利用刮刀将陶瓷浆料刮成片状,再通过干燥工艺使片状浆料形成生胚;然后根据线路层设计钻导通孔,采用丝网印刷金属浆料进行布线和填孔,最后将各生胚层叠加,置于高温炉 (1600°C) 中烧结而成,如图 16 所示。由于 HTCC 基板制备工艺温度高,因此导电金属选择受限,只能采用熔点高但导电性较差的金属 (如 W、Mo 及 Mn 等),制作成本较高。此外,受到丝网印刷工艺限制,HTCC 基板线路精度较差,难以满足高精度封装需求。但 HTCC 基板具有较高机械强度和热导率 [20 W/(m·K) ~ 200 W/(m·K)],物化性能稳定,适合大功率及高温环境下器件封装,如图 17 (a) 所示。Cheah 等人将 HTCC 工艺应用于微型蒸汽推进器,制备的微型加热器比硅基推进器效率更高,能耗降低 21%以上。

  为了降低 HTCC 制备工艺温度,同时提高线路层导电性,业界开发了 LTCC 基板。与 HTCC 制备工艺类似,只是 LTCC 制备在陶瓷浆料中加入了一定量玻璃粉来降低烧结温度,同时使用导电性良好的 Cu、Ag 和 Au 等制备金属浆料,如图 17 (b) 所示。LTCC 基板制备温度低,但生产效率高,可适应高温、高湿及大电流应用要求,在军工及航天电子器件中得到广泛应用。Yuan 等人选用CaO-BaO-Al2O3-B2O3-SiO2/AlN 体系原料,当 AlN 组分含量为 40% 时,研制的 LTCC 基板热导率为 5.9W/(m·K),介电常数为 6.3,介电损耗为 4.9 × 10-3,弯曲强度高达 178 MPa。Qing 等人采用Li2O-Al2O3-SiO2/Al2O3 体系原料,制备的 LTCC 基板抗弯强度为 155 MPa,介电损耗为 2.49 × 10-3。

  虽然 LTCC 基板具有上述优势,但由于在陶瓷浆料中添加了玻璃粉,导致基板热导率偏低 [一般仅为 3 W/(m·K) ~ 7 W/(m·K)]。此外,与 HTCC 一样,由于 LTCC 基板采用丝网印刷技术制作金属线路,有可能因张网问题造成对位误差,导致金属线路层精度低;而且多层陶瓷生胚叠压烧结时还存在收缩比例差异问题,影响成品率,一定程度上制约了 LTCC 基板技术发展。Yan 等人经过表面处理将 LTCC 基板翘曲由 150 μm ~ 250 μm 降低至 80 μm ~ 110 μm;Sim 等人通过改进 LTCC基板封装形式,去掉芯片与金属基底间绝缘层,模拟和实验结果显示其热阻降低为 7.3 W/(m·K),满足大功率 LED 封装需求。

  与 HTCC/LTCC 基板一次成型制备三维陶瓷基板不同,台湾阳升公司采用多次烧结法制备了 MSC 基板。其工艺流程如图 18 所示,首先制备厚膜印刷陶瓷基板(TPC),随后通过多次丝网印刷将陶瓷浆料印刷于平面 TPC 基板上,形成腔体结构,再经高温烧结而成,得到的 MSC 基板样品如图 19 所示。由于陶瓷浆料烧结温度一般在 800°C 左右,因此要求下部的 TPC 基板线路层必须能耐受如此高温,防止在烧结过程中出现脱层或氧化等缺陷。由上文可知,TPC 基板线路层由金属浆料高温烧结 (一般温度为 850°C ~ 900°C) 制备,具有较好的耐高温性能,适合后续采用烧结法制备陶瓷腔体。MSC 基板技术生产设备和工艺简单,平面基板与腔体结构独立烧结成型,且由于腔体结构与平面基板均为无机陶瓷材料,热膨胀系数匹配,制备过程中不会出现脱层、翘曲等现象。其缺点在于,下部 TPC 基板线路层与上部腔体结构均采用丝网印刷布线,图形精度较低;同时,因受丝网印刷工艺限制,所制备的 MSC 基板腔体厚度 (深度) 有限。因此MSC 三维基板仅适用于体积较小、精度要求不高的电子器件封装。

  上述 HTCC、LTCC 及 MSC 基板线路层都采用丝网印刷制备,精度较低,难以满足高精度、高集成度封装要求,因此业界提出在高精度 DPC 陶瓷基板上成型腔体制备三维陶瓷基板。由于 DPC 基板金属线°C) 下会出现氧化、起泡甚至脱层等现象,因此基于 DPC 技术的三维陶瓷基板制备必须在低温下进行。台湾瑷司柏公司 (ICP) 提出采用胶粘法制备三维陶瓷基板,样品如图 20 所示。首先加工金属环和 DPC 陶瓷基板,然后采用有机粘胶将金属环与 DPC 基板对准后粘接、加热固化,如图 21 所示。由于胶液流动性好,因此涂胶工艺简单,成本低,易于实现批量生产,且所有制备工艺均在低温下进行,不会对 DPC 基板线路层造成损伤。但是,由于有机粘胶耐热性差,固化体与金属、陶瓷间热膨胀系数差较大,且为非气密性材料,目前 DAC 陶瓷基板主要应用于线路精度要求较高,但对耐热性、气密性、可靠性等要求较低的电子器件封装。

  为了解决上述不足,业界进一步提出采用无机胶替代有机胶的粘接技术方案,大大提高了 DAC三维陶瓷基板的耐热性和可靠性。其技术关键是选用无机胶,要求其能在低温 (低于 200°C) 下固化;固化体耐热性好 (能长期耐受 300°C 高温),与金属、陶瓷材料粘接性好 (剪切强度大于 10 MPa),同时与金属环 (围坝) 和陶瓷基片材料热膨胀系数匹配 (降低界面热应力)。美国科锐公司 (Cree) XRE 系列产品封装基板既采用了该技术方案,如图 22。

  为了发挥 DPC 陶瓷基板技术优势 (高图形精度、垂直互连等),吴朝晖等人提出采用多次/层电镀增厚技术,在 DPC 陶瓷基板上直接制备具有厚铜围坝结构的三维陶瓷基板,如图 23 (a) 所示。其制备工艺与 DPC 基板类似,只是在完成平面 DPC 基板线路层加工后,再通过多次光刻、显影和图形电镀完成围坝制备 (厚度一般为 500μm ~ 700 μm),如图 24 所示。需要指出的是,由于干膜厚度有限 (一般为 50 μm ~ 80 μm),需要反复进行光刻、显影、图形电镀等工艺;同时为了提高生产效率,需要在电镀增厚围坝时提高电流密度,导致镀层表面粗糙,需要不断进行研磨,保持镀层表面平整与光滑。

  MPC 基板采用图形电镀工艺制备线路层,避免了HTCC/LTCC 与 TPC 基板线路粗糙问题,满足高精度封装要求。陶瓷基板与金属围坝一体化成型为密封腔体,结构紧凑,无中间粘结层,气密性高。MPC 基板整体为全无机材料,具有良好的耐热性,抗腐蚀、抗辐射等。金属围坝结构形状可以任意设计,围坝顶部可制备出定位台阶,便于放置玻璃透镜或盖板,目前已成功应用于深紫外 LED封装和 VCSEL 激光器封装,已部分取代 LTCC 基板。其缺点在于:由于干膜厚度限制,制备过程需要反复进行光刻、显影、图形电镀与表面研磨,耗时长 (厚度为 600 μm 围坝需要电镀 10 h 以上),生产成本高;此外,由于电镀围坝铜层较厚,内部应力大,MPC 基板容易翘曲变形,影响后续的芯片封装质量与效率。

  为了提高三维陶瓷基板生产效率,同时保证基板线路精度与可靠性,陈明祥等人提出制备含免烧陶瓷围坝的三维陶瓷基板,其样品如图 25 所示。为了制备具有高结合强度、高耐热性的陶瓷围坝,实验采用碱激发铝硅酸盐浆料(alkali-activated aluminosilicate cement paste, ACP) 作为围坝结构材料。围坝由偏高岭土在碱性溶液中脱水缩合而成,具有低温固化、耐热性好 (可长期耐受 500°C 高温)、与金属/陶瓷粘接强度高、抗腐蚀,物化性能稳定等优点,满足电子封装应用需求。DMC 基板制备工艺流程如图 26 所示,首先制备平面 DPC 陶瓷基板,同时制备带孔橡胶模具;将橡胶模具与 DPC 陶瓷基板对准合模后,向模具腔内填充牺牲模材料;待牺牲模材料固化后,取下橡胶模具,牺牲模粘接于 DPC 陶瓷基板上,并精确复制橡胶模具孔结构特征,作为铝硅酸盐浆料成型模具;随后将铝硅酸盐浆料涂覆于 DPC 陶瓷基板上并刮平,加热固化,最后将牺牲模材料腐蚀,得到含铝硅酸盐免烧陶瓷围坝的三维陶瓷基板。

  铝硅酸盐浆料固化温度低,对 DPC 陶瓷基板线路层影响极小,并与 DPC 基板制备工艺兼容。橡胶具有易加工、易脱模以及价格低廉等特点,能精确复制围坝结构 (腔体) 形状与尺寸,保证围坝加工精度。实验结果表明,腔体深度、直径加工误差均小于 30 μm,说明该工艺制备的三维陶瓷基板精度高,重复性好,适合量产。铝硅酸盐浆料加热后脱水缩合,主要产物为无机聚合物,其耐热性好,热膨胀系数与陶瓷基片匹配,具有良好的热稳定性;固化体与陶瓷、金属粘接强度高,制备的三维陶瓷基板可靠性高。围坝厚度 (腔体高度) 取决于模具厚度,理论上不受限制,可满足不同结构和尺寸的电子器件封装要求。

  表 3 比较了上述不同三维陶瓷基板性能的一些基本性能。与表 2 重复或类似的数据不再列入。

  陶瓷基板集成化:一般而言,TPC、DBC 和 AMB 陶瓷基板只适合制备单面线路层 (或双面线路层,但上下层不导通)BEAT365官方网站。如果要实现上下层导通,需要先激光打孔 (孔径一般大于 200 μm),然后孔内填充金属浆料后烧结而成,孔内金属层导电、导热性差,基板可靠性低。HTCC/LTCC 基板采用多层生胚片叠加 (金属通孔对准) 后烧结制备,因此可实现基板内垂直互连,提高封装集成度,但HTCC/LTCC 基板电阻率较大,电流通载能力较低。DPC 陶瓷基板可以采用激光打孔 (孔径一般为60 μm ~ 120 μm) 和电镀填孔技术制备金属通孔,由于孔内电镀填充致密铜柱,导电导热性能优良,因而可实现陶瓷基板上下线路层垂直互连。在此基础上,通过电镀增厚等技术制备围坝,可得到含围坝结构的三维陶瓷基板;如果采用焊接/粘接技术实现多片 DPC 基板垂直集成,则可以进一步得到多层陶瓷基板 (Multilayer Ceramic Substrate, MLC,如图 37),满足功率器件三维封装和异质集成需求。

  以上是小编分享的陶瓷基板的7大技术工艺类型,阐述了工艺的流程和特点,陶瓷基板逐渐往高功率、高集成化、高精密、精细化方方向发展。对技术的要求越来越高,也讲促进陶瓷基板不断上进。更多陶瓷基板pcb问题可以咨询金瑞欣特种电路。返回搜狐,查看更多